Inference in Bayesian Networks

CE417: Introduction to Artificial Intelligence Sharif University of Technology Fall 2023

Soleymani

Slides are based on Klein and Abdeel, CS188, UC Berkeley.

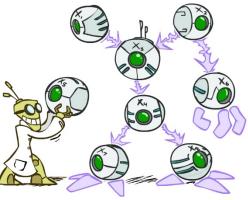
Recap: Bayes' Net Representation

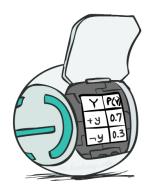
- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination parents' values

 $P(X|a_1\ldots a_n)$

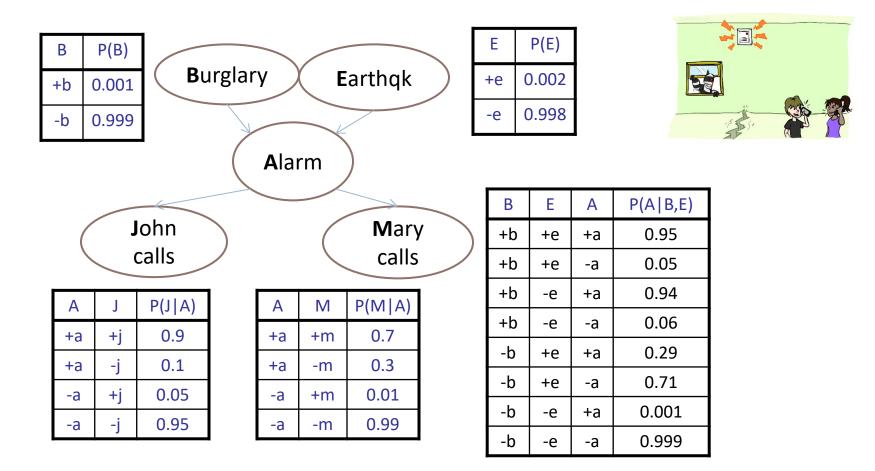
- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$



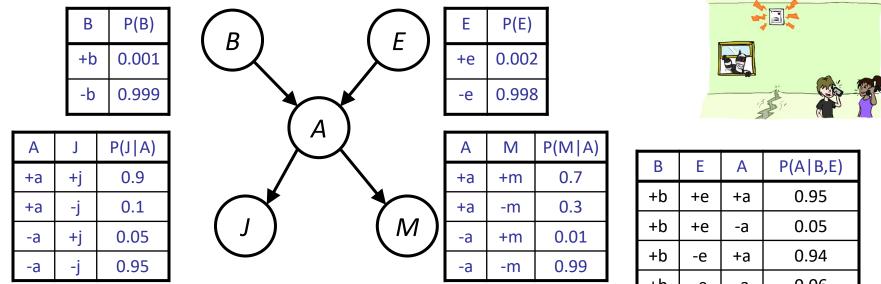


Example: Alarm Network



3

Example: Alarm Network

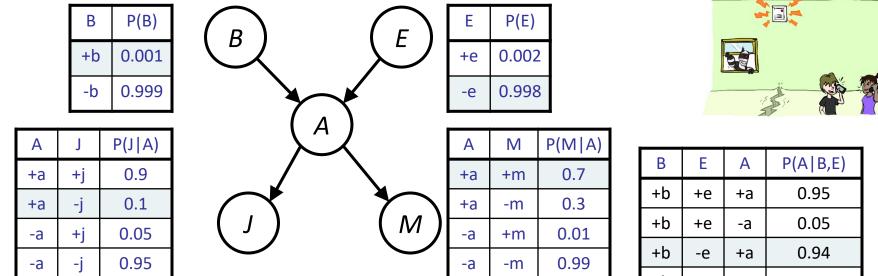


$$P(+b, -e, +a, -j, +m) =$$

P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) =

+b 0.06 -е -a 0.29 -b +e +a -b 0.71 +e -a -b 0.001 -е +a -b 0.999 -е -a

Example: Alarm Network



P(+b, -e, +a, -j, +m) = P(+b)P(-e)P(+a|+b, -e)P(-j|+a)P(+m|+a) = $0.001 \times 0.998 \times 0.94 \times 0.1 \times 0.7$

ם		~	
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-e	-a	0.999

Video of Demo BN Applet

Bayes' Nets

Representation

Conditional Independences

- **Probabilistic Inference** •
 - Enumeration (exact, exponential complexity) •
 - Variable elimination (exact, worst-case exponential • complexity, often better)
 - Inference is NP-complete •
 - Sampling (approximate) •
- Learning Bayes' Nets from Data •

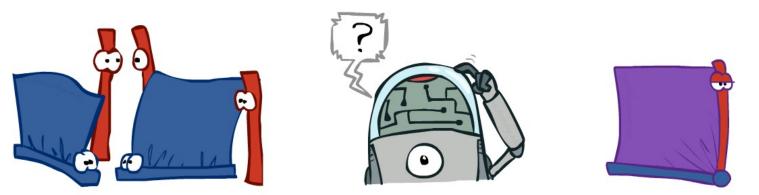
Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
 - Posterior probability

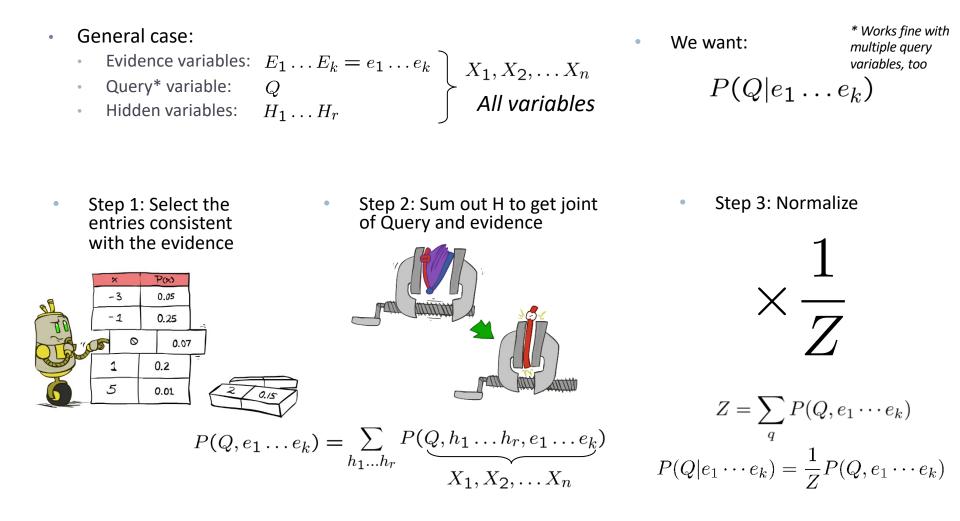
 $P(Q|E_1 = e_1, \dots E_k = e_k)$

• Most likely explanation:

 $\operatorname{argmax}_q P(Q = q | E_1 = e_1 \dots)$



Inference by Enumeration



Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration:
 - Any probability of interest can be computed by summing entries from the joint distribution: $P(Q | e) = \alpha \sum_{h} P(Q, h, e)$
 - Entries from the joint distribution can be obtained from a BN by multiplying the corresponding conditional probabilities

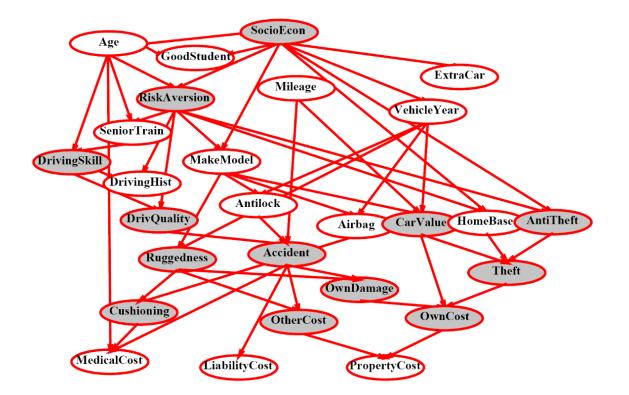
$$\begin{split} P(B \mid +j, +m) &\propto_B P(B, +j, +m) \\ &= \sum_{e,a} P(B, e, a, +j, +m) \\ &= \sum_{e,a} P(B)P(e)P(a|B, e)P(+j|a)P(+m|a) \\ &= P(B)P(+e)P(+a|B, +e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(-a|B, +e)P(+j| - a)P(+m| - a) \end{split}$$

В

P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)

- So inference in Bayes nets means computing sums of products of numbers: sounds easy!!
- Problem: sums of exponentially many products!

Inference by Enumeration?



P(Antilock|observed variables) = ?

Distribution of Products on Sums

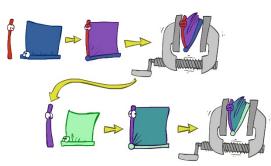
- Exploiting the factorization properties to allow sums and products to be interchanged
 - a×b + a×c needs three operations while a×(b + c) requires two
 - $a \times (b_1 + \dots + b_n)$

Can we do better?

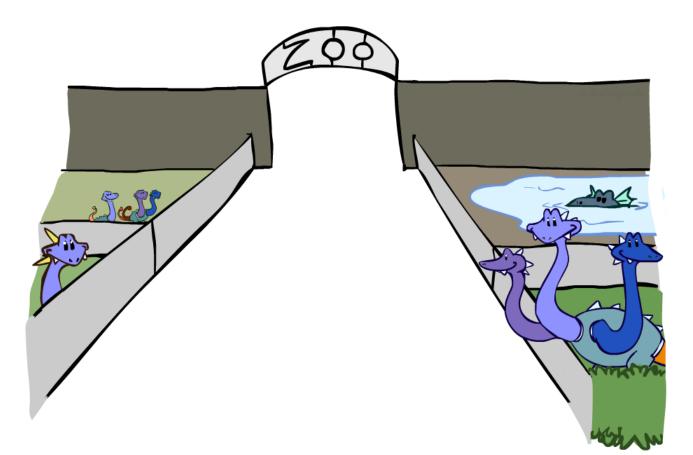
- Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy + vxz
 - 16 multiplies, 7 adds
 - Lots of repeated subexpressions!
- Rewrite as (u+v)(w+x)(y+z)
 - 2 multiplies, 3 adds
 - $\sum_{e,a} P(B) P(e) P(a|B,e) P(j|a) P(m|a)$
 - = $P(B)P(e)P(a|B,e)P(j|a)P(m|a) + P(B)P(\neg e)P(a|B,\neg e)P(j|a)P(m|a)$ + $P(B)P(e)P(\neg a|B,e)P(j|\neg a)P(m|\neg a) + P(B)P(\neg e)P(\neg a|B,\neg e)P(j|\neg a)P(m|\neg a)$ Lots of repeated subexpressions!

Variable Elimination: The basic ideas

- Move summations inwards as far as possible $P(B \mid j, m) = \alpha \sum_{e,a} P(B) P(e) P(a \mid B, e) P(j \mid a) P(m \mid a)$ $= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a \mid B, e) P(j \mid a) P(m \mid a)$
- Do the calculation from the inside out
 - i.e., sum over a first, then sum over e
 - Problem: P(a | B,e) isn't a single number, it's a bunch of different numbers depending on the values of B and e
 - Solution: use arrays of numbers (of various dimensions) with appropriate operations on them; these are called *factors*



Factor Zoo



Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - |X|x|Y| matrix
 - Sums to 1

Projected	ioint:	P(x,Y)

- A slice of the joint distribution
- Entries P(x,y) for one x, all y
- |Y|-element vector
- Sums to P(x)

P(a	,J) = I	P _a (J)
A \ J	true	false
true	0.09	0.01

P(A,J)

true

0.09

0.045

false

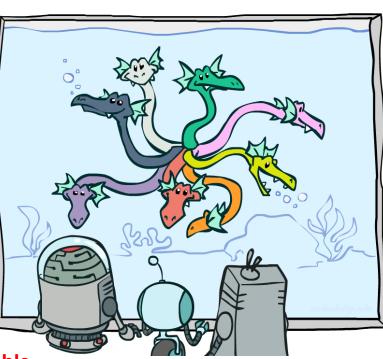
0.01

0.855

A \ J

true

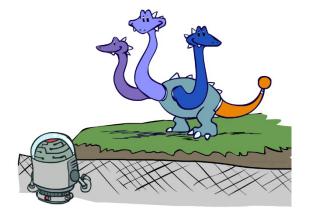
false



Number of variables (capitals) = dimensionality of the table

Factor Zoo II

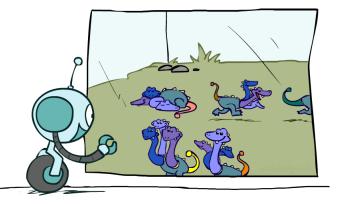
- Single conditional: P(Y | x)
 - Entries P(y | x) for fixed x, all y
 - Sums to 1



		$\left \right\rangle$
P	J	(d)

-			
A	7/1	true	false
t	rue	0.9	0.1

- Family of conditionals:
 P(X | Y)
 - Multiple conditionals
 - Entries P(x | y) for all x, y
 - Sums to |Y|



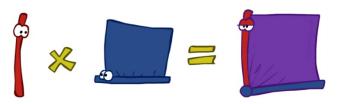
P(J|A)

A / J	true	false	
true	0.9	0.1	
false	0.05	0.95	

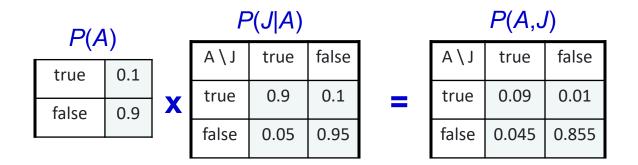
- P(J|a) - P(J|¬a)

Operation 1: Pointwise Product

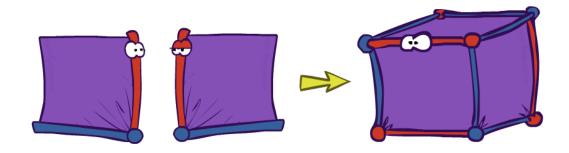
- First basic operation: *pointwise product* of factors (similar to a *database join*, *not* matrix multiply!)
 - New factor has *union* of variables of the two original factors
 - Each entry is the product of the corresponding entries from the original factors



• Example: $P(J|A) \times P(A) = P(A,J)$



Example: Making larger factors



• Example: $P(A,J) \times P(A,M) = P(A,J,M)$

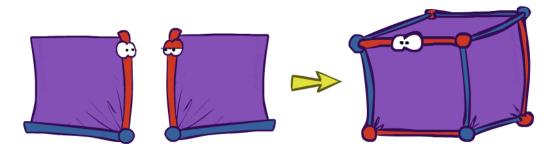
X

			$\underline{P(A,J,M)}$				
	P(A,M	<i>/</i>)			J / M	true	false
	, (, ,,,,	··)			4		
A \ M	true	false		J / M	true	false	.7618
true	0.07	0.03	=	true			A=false
false	0.009	0.891		false		.0003	A=true

	<i>P</i> (<i>A</i> ,J	/)
I	truo	fa

A / J	true	false
true	0.09	0.01
false	0.045	0.855

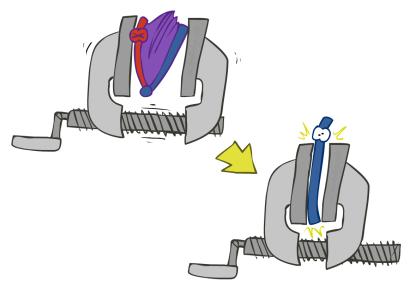
Example: Making larger factors



- Example: $P(U,V) \times P(V,W) \times P(W,X) = P(U,V,W,X)$
- Sizes: [10,10] x [10,10] x [10,10] = [10,10,10,10]
- I.e., 300 numbers blows up to 10,000 numbers!
- Factor blowup can make VE very expensive

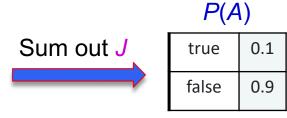
Operation 2: Summing Out a Variable

- Second basic operation: *summing out* (or eliminating) a variable from a factor
 - Shrinks a factor to a smaller one
- Example: $\sum_{j} P(A,J) = P(A,j) + P(A,-j) = P(A)$



P(A,J)

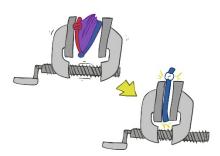
A / J	true	false
true	0.09	0.01
false	0.045	0.855



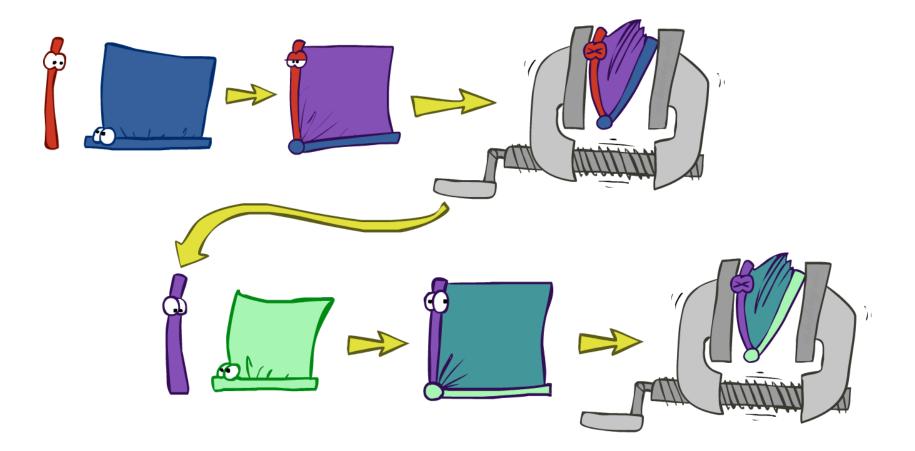
Summing out from a product of factors

- Project the factors each way first, then sum the products
- Example: $\sum_{a} P(a | B, e) \times P(j | a) \times P(m | a)$

 $= P(a | B,e) \times P(j | a) \times P(m | a) +$ $P(\neg a | B,e) \times P(j | \neg a) \times P(m | \neg a)$

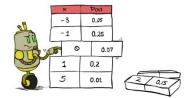


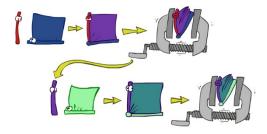
Variable Elimination



Variable Elimination

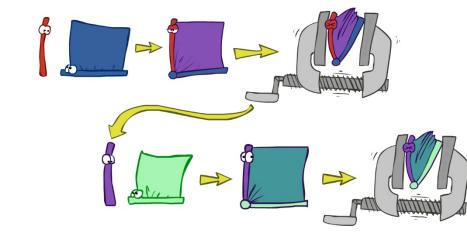
- Query: $P(Q | E_1 = e_1, ..., E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H_i
 - Eliminate (sum out) H_j from the product of all factors mentioning H_j
- Join all remaining factors and normalize



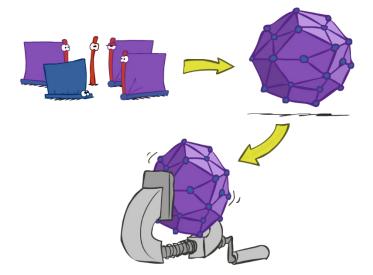


Inference by Enumeration vs. Variable Elimination

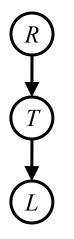
- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables
- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration



First we'll need some new notation: factors

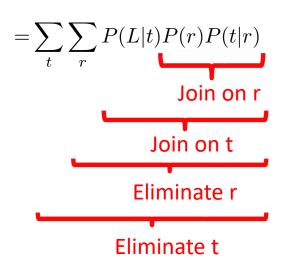


Traffic Domain

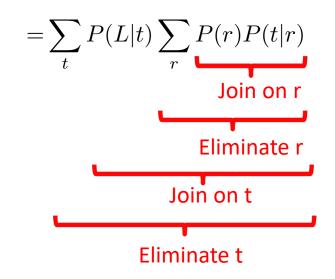


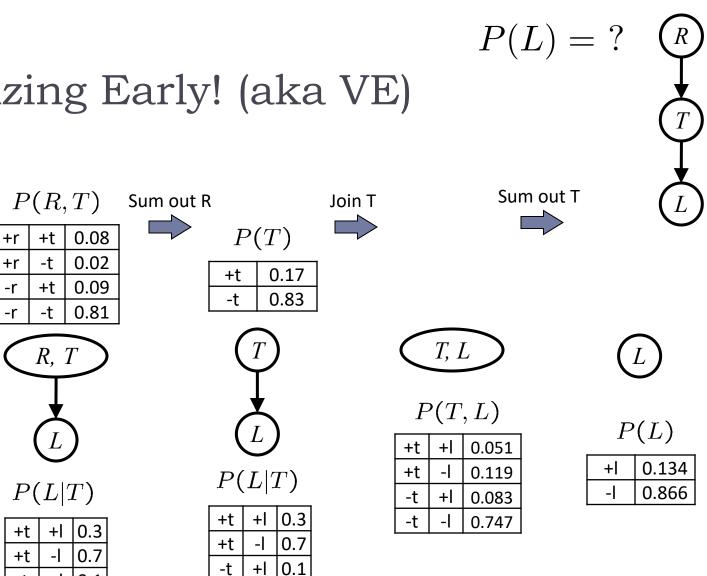
$$P(L) = ?$$

Inference by Enumeration



Variable Elimination





0.9

-|

-t

Marginalizing Early! (aka VE)

+|

-t

-t

0.1

0.9

Join R

P(R)

P(T|R)

-t

-t

P(L|T)

-1

+|

-1

+r

-r

+r

+r

-r

-r

+t

+t

-t

-t

R

T

0.1

0.9

+t |0.8

+t |0.1

+1 0.3

0.7

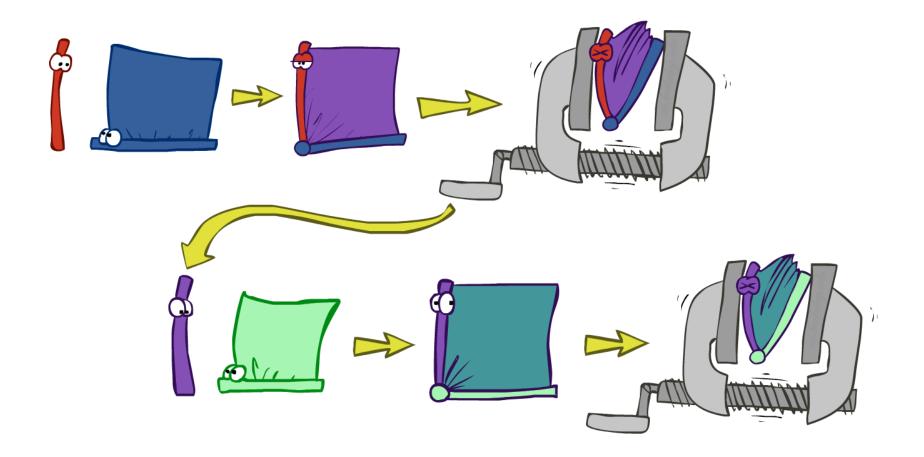
0.1

0.9

0.2

0.9

Marginalizing Early (= Variable Elimination)



Improvement Reasons

• Computing an expression of the form (sum-product inference):

 $\boldsymbol{\Phi}$: the set of factors

- We used the structure of BN to factorize the joint distribution and thus the scope of the resulted factors will be limited.
- Distributive law: If $h \notin \text{Scope}(\phi_1)$ then $\sum_h \phi_1 \cdot \phi_2 = \phi_1 \cdot \sum_h \phi_2$
 - Performing the summations over the product of only a subset of factors
- We find sub-expressions that can be computed once and then we save and reuse them in later computations
 - Instead of computing them exponentially many times

Variable Elimination Algorithm

- Given: BN, evidence e, a query $P(Q|x_e)$
- Choose an **ordering** on variables, e.g., *X*₁, ..., *X*_n
- For i = 1 to n, If $X_i \notin \{Q, X_e\}$
 - Collect factors f_1, \dots, f_k that include X_i
 - Generate a new factor by eliminating X_i from these factors:

$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

- Multiply all remaining factors
- Normalize $P(\boldsymbol{Q}, \boldsymbol{x_e})$ to obtain $P(\boldsymbol{Q}|\boldsymbol{x_e})$

After this summation, X_i is eliminated

$$P(B|j,m) \propto P(B,j,m)$$

$$P(B) P(E) P(A|B,E) P(j|A) P(m|A)$$

$$P(A|B,E)$$

$$P(j|A)$$

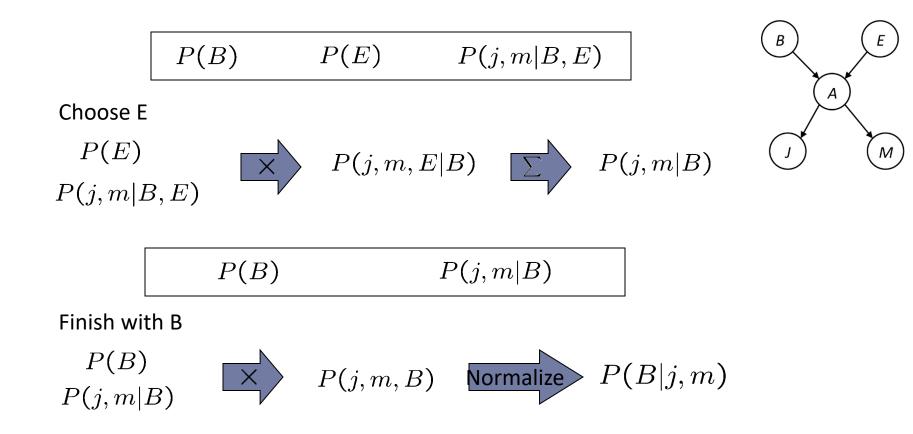
$$P(j|A)$$

$$P(m|A)$$

$$P(B) P(E) P(j,m|B,E)$$

$$P(j,m|B,E)$$

Example (Cont.)



Same Example in Equations

В $P(B|j,m) \propto P(B,j,m)$ Α P(E) P(A|B,E) P(j|A) P(m|A)P(B) $P(B|j,m) \propto P(B,j,m)$ $=\sum_{e,a} P(B,j,m,e,a)$ marginal can be obtained from joint by summing out $= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$ use Bayes' net joint distribution expression use $x^*(y+z) = xy + xz$ $= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$ joining on a, and then summing out gives f₁ $= \sum_{e} P(B)P(e)f_1(B, e, j, m)$ $= P(B) \sum_{e} P(e) f_1(B, e, j, m)$ use $x^*(y+z) = xy + xz$ $= P(B) f_2(B, i, m)$ joining on e, and then summing out gives f_2

М

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Variable Elimination Algorithm

- Sum out each variable one at a time
 - all factors containing that variable are (removed from the set of factors and) multiplied to generate a product factor
 - The variable is summed out from the generated product factor and a new factor is obtained
 - The new factor is added to the set of the available factors

The resulted factor does not necessarily correspond to any probability or conditional probability in the network

Variable Elimination Algorithm

- Given: BN, evidence e, a query $P(Q|x_e)$
- Choose an ordering on variables, e.g., X₁, ..., X_n
- For i = I to n, If $X_i \notin \{Q, X_e\}$
 - Collect factors f_1 , ..., f_k that include X_i
 - Generate a new factor by eliminating X_i from these factors:
 - $\boldsymbol{g} = \sum_{X_i} \prod_{j=1}^k \boldsymbol{f}_j$
- Multiply all remaining factors
- Normalize $P(\boldsymbol{Q}, \boldsymbol{x_e})$ to obtain $P(\boldsymbol{Q}|\boldsymbol{x_e})$
 - Evaluating expressions in a proper order
 - Storing intermediate results
 - Summation only for those portions of the expression that depend on that variable

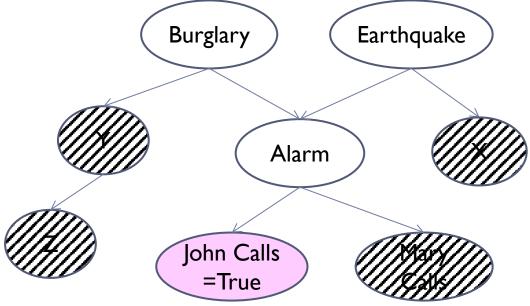
Complexity of Variable Elimination Algorithm

- In each elimination step, the following computations are required:
 - $f(x, x_1, ..., x_k) = \prod_{i=1}^M g_i(x, x_{c_i})$
 - $\sum_{x} f(x, x_1, \dots, x_k)$
- We need:
 - $(M-1) \times |Val(X)| \times \prod_{i=1}^{k} |Val(X_i)|$ multiplications
 - For each tuple x, x_1, \dots, x_k , we need M 1 multiplications
 - $|Val(X)| \times \prod_{i=1}^{k} |Val(X_i)|$ additions
 - For each tuple x_1, \ldots, x_k , we need Val(X) additions

Complexity is exponential in number of variables in the intermediate factor Size of the created factors is the dominant quantity in the complexity of VE

Variable Elimination: Pruning Irrelevant Variables

- Any variable that is not an ancestor of a query variable or evidence variable is irrelevant to the query.
- Prune all non-ancestors of query or evidence variables:
 P(b, j)



Variable Elimination Algorithm

- Given: BN, evidence e, a query $P(\boldsymbol{Q}|\boldsymbol{x}_{e})$
- Prune non-ancestors of {Q, X_e}
- Choose an **ordering** on variables, e.g., *X*₁, ..., *X*_n
- For i = 1 to n, If $X_i \notin \{Q, X_e\}$
 - Collect factors f_1, \dots, f_k that include X_i
 - Generate a new factor by eliminating X_i from these factors:

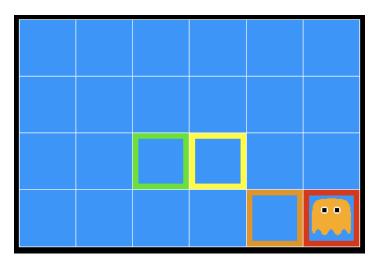
$$g = \sum_{X_i} \prod_{j=1}^k f_j$$

- Multiply all remaining factors
- Normalize $P(\boldsymbol{Q}, \boldsymbol{x}_{e})$ to obtain $P(\boldsymbol{Q}|\boldsymbol{x}_{e})$

After this summation, X_i is eliminated

Inference in Ghostbusters

- A ghost is in the grid somewhere
- Sensor readings tell how close a square is to the ghost
 - On the ghost: red
 - 1 or 2 away: orange
 - 3 or 4 away: yellow
 - 5+ away: green



• Sensors are noisy, but we know P(Color | Distance)

P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
0.05	0.15	0.5	0.3

Video of Demo Ghostbusters

Wampus Example

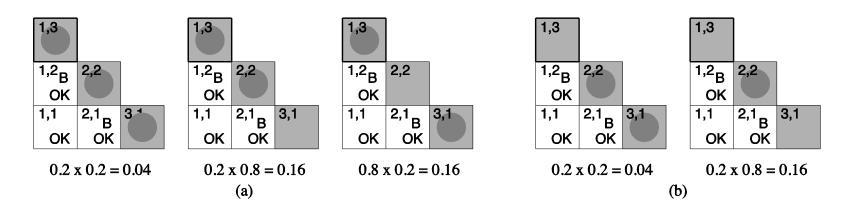
Environment:

Each square other than [1,1] can be a pit with probability 0.2 It the squares adjacent to a pit, agent perceives a Breeze Game ends when the agent enters a pit

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 В ОК	2,2	3,2	4,2
1,1 OK	2,1 B OK	3,1	4,1

 $evidence = \neg b_{1,1} \land b_{1,2} \land b_{2,1} \land \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1}$ $P(P_{1,3} | evidence) =?$

Wumpus Example



Possible worlds with $P_{1,3} = true$

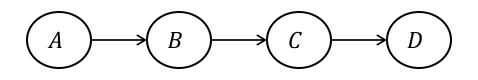
Possible worlds with $P_{1,3} = false$

$$\begin{split} &P(P_{1,3} = True \mid evidence) \propto 0.2 \times [0.2 \times 0.2 + 0.2 \times 0.8 + 0.8 \times 0.2] \\ &P(P_{1,3} = False \mid evidence) \propto 0.8 \times [0.2 \times 0.2 + 0.2 \times 0.8] \\ &\Rightarrow P(P_{1,3} = True \mid evidence) = 0.31 \end{split}$$

Variable Elimination Complexity

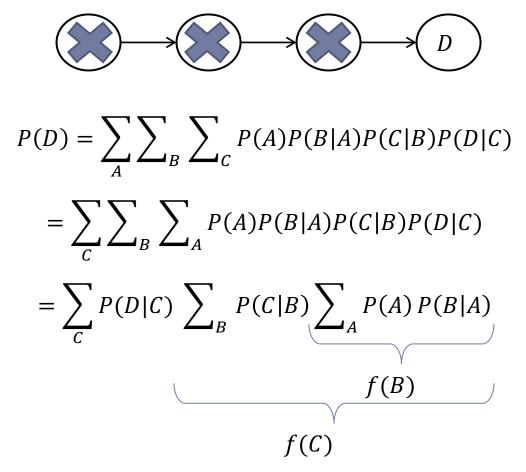
- Eliminates by summation non-observed non-query variables one by one by distributing the sum over the product
- Complexity determined by the size of the largest factor
- Variable elimination can lead to <u>significant costs saving</u> but its efficiency <u>depends on the network structure</u>.
 - there are still cases in which this algorithm we lead to exponential time.

Example: Inference on a Chain



$$P(D) = \sum_{A} \sum_{B} \sum_{C} P(A, B, C, D)$$
$$P(D) = \sum_{A} \sum_{B} \sum_{C} P(A)P(B|A)P(C|B)P(D|C)$$

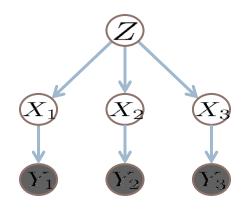
 A naïve summation needs to enumerate over an exponential number of terms Inference on a Chain:



• In a chain of n nodes each having d values, $O(nd^2)$ instead of $O(d^n)$

Another Variable Elimination Example

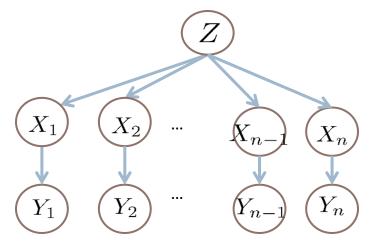
Query: $P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$



Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X₃ respectively).

Variable Elimination Ordering

• For the query P(X_n|y₁,...,y_n) work through the following two different orderings as done in previous slide: Z, X₁, ..., X_{n-1} and X₁, ..., X_{n-1}, Z. What is the size of the maximum factor generated for each of the orderings?



- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

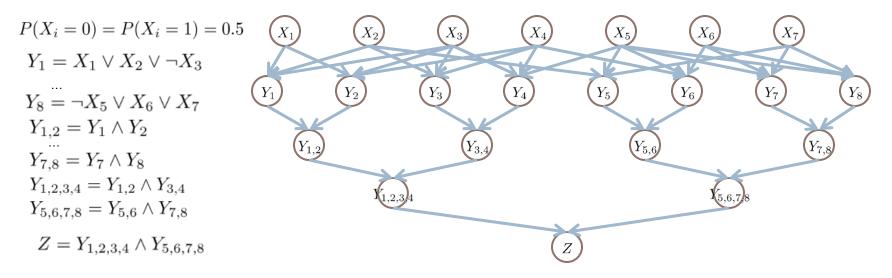
VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity?

• CSP:

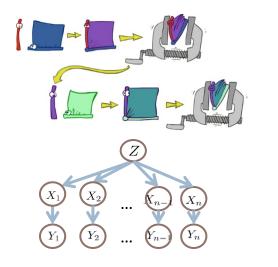
 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor \neg x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7) \land (\neg x_5 \lor x_6 \lor x_7) \land (\neg x_5 \lor (\neg x_6 \lor x_7) \land (\neg x_$

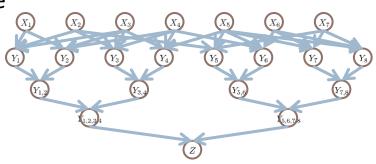


- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Variable Elimination: Summary

- Interleave joining and marginalizing
- d^k entries computed for a factor over k variables with domain sizes d
- Ordering of elimination of variables can affect size of factors generated
- Worst case: running time exponential in the size of the Bayes' net





Bayes' Nets

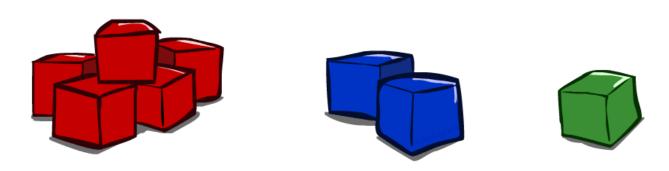
Representation

- Conditional Independences
- Probabilistic Inference

Enumeration (exact, exponential complexity)

- Variable elimination (exact, worst-case exponential complexity, often better)
- Inference is NP-complete
- Sampling (approximate)
- Learning Bayes' Nets from Data

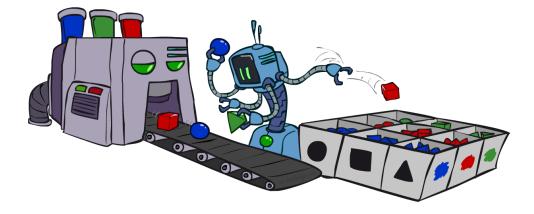
Approximate Inference: Sampling



Sampling

- Sampling is a lot like repeated simulation
 - Predicting the weather, basketball games, ...
- Basic idea
 - Draw N samples from a sampling distribution S
 - Compute an approximate posterior probability
 - Show this converges to the true probability P

- Why sample?
 - Often very fast yo get a descent approximate answer
 - The algorithms are very simple and general (easy to apply to fancy models)
 - They require very little memory (*O*(*n*))
 - They can be applied to large models, whereas exact algorithms blow up



Example

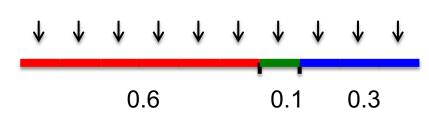
- Suppose you have two agent programs A and B for Monopoly
- What is the probability that **A** wins?
 - Method 1:
 - Let *s* be a sequence of dice rolls and Chance and Community Chest cards
 - Given s, the outcome V(s) is determined (1 for a win, 0 for a loss)
 - Probability that A wins is
 - Problem: infinitely many sequences *s* !
 - Method 2:
 - Sample N sequences from P(s), play N games (maybe 100)
 - Probability that **A** wins is roughly $1/N \sum_i V(s_i)$ i.e., fraction of wins in the sample

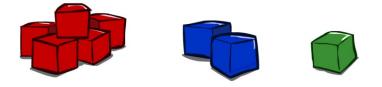
Sampling

- Sampling from a given distribution
 - Step 1: Get sample *u* from uniform distribution over [0, 1)
 - E.g. random() in python
 - Step 2: Convert this sample *u* into an outcome for the given distribution by having each outcome associated with a sub-interval of [0,1) with sub-interval size equal to probability of the outcome

С	P(C)	
red	0.6	
green	0.1	
blue	0.3	

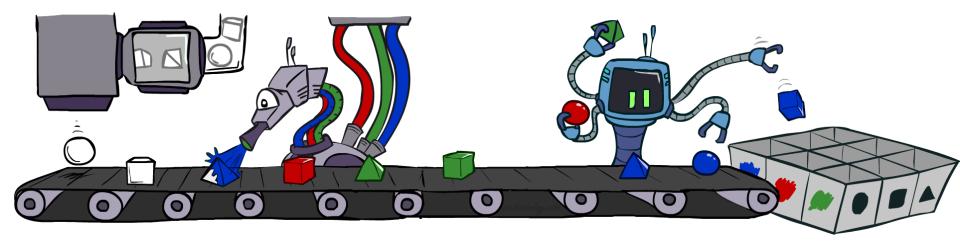
- $\begin{array}{l} 0 \leq u < 0.6, \rightarrow C = red \\ 0.6 \leq u < 0.7, \rightarrow C = green \\ 0.7 \leq u < 1, \rightarrow C = blue \end{array}$
- If random() returns u = 0.83, then our sample is C = blue
- E.g, after sampling 8 times:

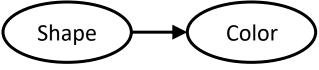


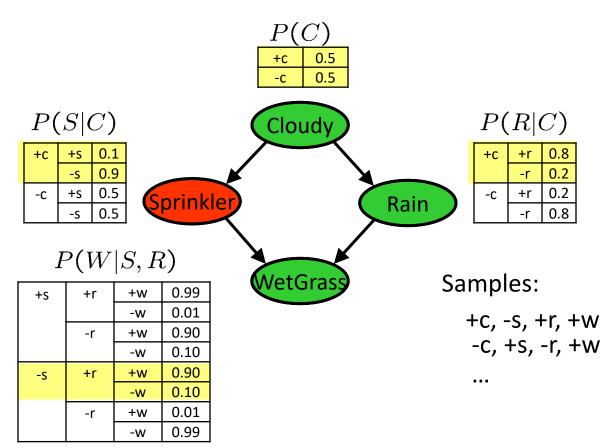


Sampling in Bayes' Nets

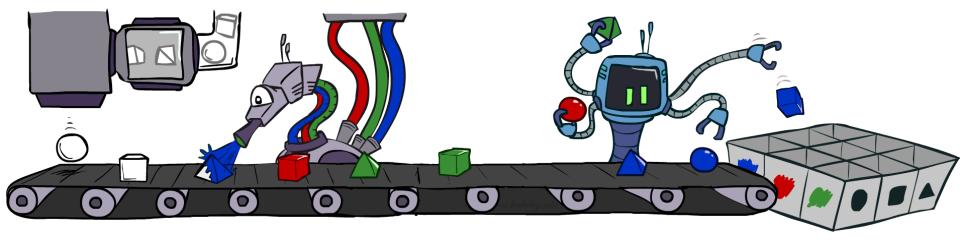
- Prior Sampling
- Rejection Sampling
- Likelihood Weighting
- Gibbs Sampling







- For i=1, 2, ..., n
 - Sample x_i from P(X_i | Parents(X_i))
- Return (x₁, x₂, ..., x_n)



• This process generates samples with probability:

$$S_{PS}(x_1 \dots x_n) = \prod_{i=1}^n P(x_i | \mathsf{Parents}(X_i)) = P(x_1 \dots x_n)$$

• Let the number of samples of an event be $N_{PS}(x_1 \dots x_n)$

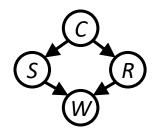
• Then
$$\lim_{N \to \infty} \hat{P}(x_1, \dots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \dots, x_n)/N$$

= $S_{PS}(x_1, \dots, x_n)$
= $P(x_1 \dots x_n)$

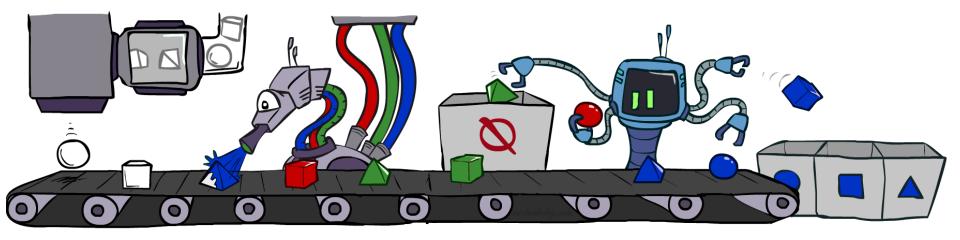
• I.e., the sampling procedure is consistent

Example

- We'll get a bunch of samples from the BN:
 - +c, -s, +r, +w
 - +c, +s, +r, +w
 - -c, +s, +r, -w
 - +c, -s, +r, +w
 - -c, -s, -r, +w
- If we want to know P(W)
 - We have counts <+w:4, -w:1>
 - Normalize to get P(W) = <+w:0.8, -w:0.2>
 - This will get closer to the true distribution with more samples
 - Can estimate anything else, too
 - What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
 - Fast: can use fewer samples if less time (what's the drawback?)

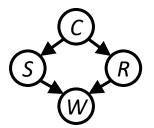


Rejection Sampling



Rejection Sampling

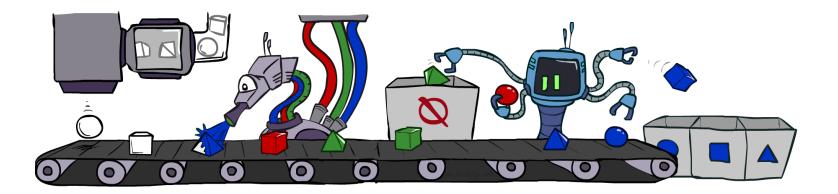
- A simple application of prior sampling for estimating conditional probabilities
 - Let's say we want $P(C | r, w) = \alpha P(C, r, w)$
 - For these counts, samples with ¬r or ¬w are not relevant
 - So count the C outcomes for samples with r, w and reject all other samples
- This is called rejection sampling
 - It is also consistent for conditional probabilities (i.e., correct in the limit)

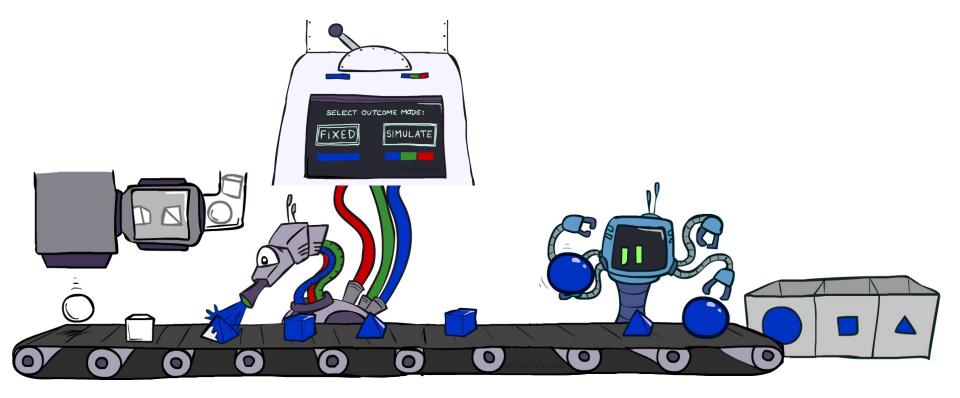


+C, -S, +r, +W +C, +S, +r, +W -C, +S, +r, -W +C, -S, +r, +W -C, -S, -r, +W

Rejection Sampling

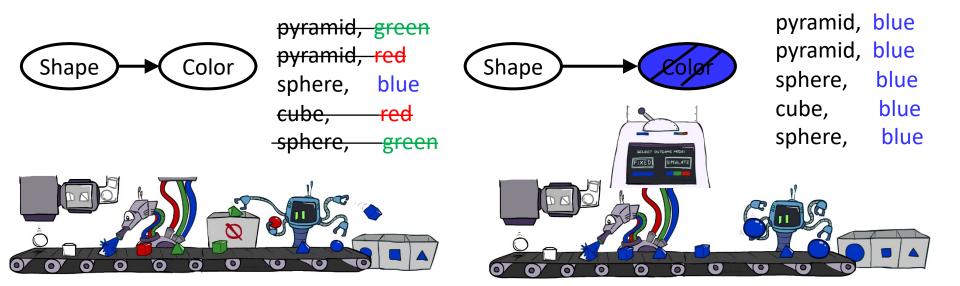
- Input: evidence e₁,...,e_k
- For i=1, 2, ..., n
 - Sample X_i from P(X_i | parents(X_i))
 - If x_i not consistent with evidence
 - Reject: Return, and no sample is generated in this cycle
- Return (x₁, x₂, ..., x_n)



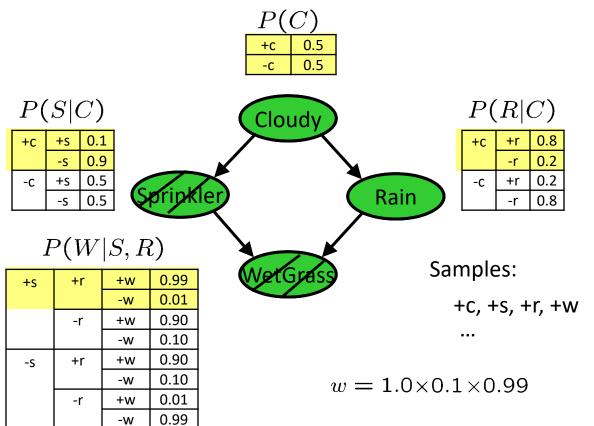


- Problem with rejection sampling:
 - If evidence is unlikely, rejects lots of samples
 - Evidence not exploited as you sample
 - Consider P(Shape|blue)

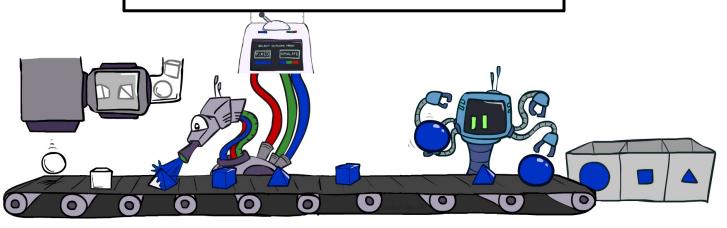
- Idea: **fix** evidence variables and sample the rest
 - Problem: sample distribution not consistent!
 - Solution: : weight each sample by probability of evidence variables given parents



P(C| +s, +w)=?



- Input: evidence *e*₁,..,*e*_k
- **w** = 1.0
- for i=1, 2, ..., n
 - if X_i is an evidence variable
 - x_i = observed value_i for X_i
 - Set $w = w * P(x_i | parents(X_i))$
 - else
 - Sample x_i from P(X_i | parents(X_i))
- return (*x*₁, *x*₂, ..., *x*_n), *w*



Sampling distribution if z sampled and e fixed evidence •

$$S_{WS}(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{l} P(z_i | \mathsf{Parents}(Z_i))$$

Now, samples have weights •

$$w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{m} P(e_i | \mathsf{Parents}(E_i))$$

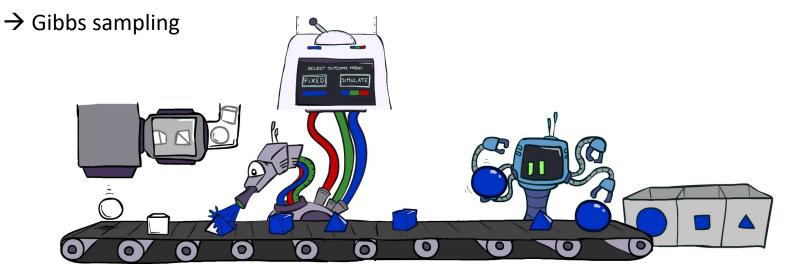
Togeth •

her, weighted sampling distribution is consistent

$$S_{WS}(z, e) \cdot w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(e_i))$$

$$= P(z, e)$$

- Likelihood weighting is good
 - We have taken evidence into account as we generate the sample
 - E.g. here, W's value will get picked based on the evidence values of S, R
 - More of our samples will reflect the state of the world suggested by the evidence
- Likelihood weighting doesn't solve all our problems
 - Evidence influences the choice of downstream variables, but not upstream ones (C isn't more likely to get a value matching the evidence)
- We would like to consider evidence when we sample every variable



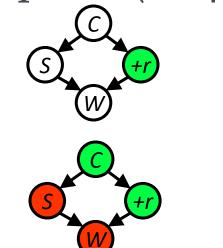
Gibbs Sampling

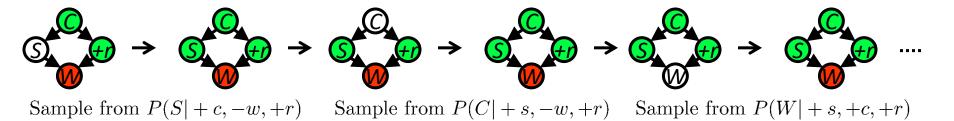
Gibbs Sampling

- *Procedure:* keep track of a full instantiation x₁, x₂, ..., x_n.
 - Start with an arbitrary instantiation consistent with the evidence.
 - Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.
 - Keep repeating this for a long time.
- *Property:* in the limit of repeating this infinitely many times the resulting sample is coming from the correct distribution
- *Rationale*: both upstream and downstream variables condition on evidence.
- In contrast: likelihood weighting only conditions on upstream evidence, and hence weights obtained in likelihood weighting can sometimes be very small.
 - Sum of weights over all samples is indicative of how many "effective" samples were obtained, so want high weight.

Gibbs Sampling Example: P(S | +r)

- Step 1: Fix evidence
 - R = +r
- Step 2: Initialize other variables
 - Randomly
- Steps 3: Repeat
 - Choose a non-evidence variable X
 - Resample X from P(X | all other variables)





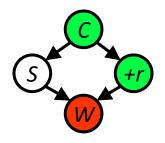
Gibbs Sampling

- How is this better than sampling from the full joint?
 - In a Bayes' Net, sampling a variable given all the other variables (e.g. P(R|S,C,W)) is usually much easier than sampling from the full joint distribution
 - Only requires a join on the variable to be sampled (in this case, a join on R)
 - The resulting factor only depends on the variable's parents, its children, and its children's parents (this is often referred to as its Markov blanket)

Efficient Resampling of One Variable

Sample from P(S | +c, +r, -w)

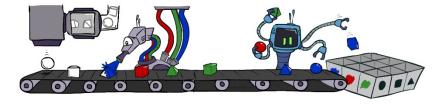
$$\begin{split} P(S|+c,+r,-w) &= \frac{P(S,+c,+r,-w)}{P(+c,+r,-w)} \\ &= \frac{P(S,+c,+r,-w)}{\sum_s P(s,+c,+r,-w)} \\ &= \frac{P(+c)P(S|+c)P(+r|+c)P(-w|S,+r)}{\sum_s P(+c)P(s|+c)P(+r|+c)P(-w|S,+r)} \\ &= \frac{P(+c)P(S|+c)P(+r|+c)P(-w|S,+r)}{P(+c)P(+r|+c)\sum_s P(s|+c)P(-w|S,+r)} \\ &= \frac{P(S|+c)P(-w|S,+r)}{\sum_s P(s|+c)P(-w|S,+r)} \end{split}$$



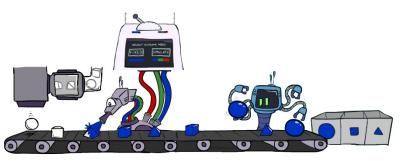
- Many things cancel out only CPTs with S remain!
- More generally: only CPTs that have resampled variable need to be considered, and joined together

Bayes' Net Sampling Summary

- Prior Sampling P:
 - Generate complete samples from $P(x_1,...,x_n)$



- Likelihood Weighting P(Q | e):
 - Weight samples by how well they predict *e*



- Rejection Sampling P(Q | e):
 - Reject samples that don't match e

- Gibbs Sampling P(Q | e):
 - Wander around in e space
 - Average what you see

Further Reading on Gibbs Sampling*

- Gibbs sampling produces sample from the query distribution P(Q|e) in limit of re-sampling infinitely often
- Gibbs sampling is a special case of more general methods called Markov chain Monte Carlo (MCMC) methods
 - Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs sampling is a special case of Metropolis-Hastings)
- You may read about Monte Carlo methods they're just sampling