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Recap: Bayes’ Net Representation

• A directed, acyclic graph, one node per random
variable

• A conditional probability table (CPT) for each node

• A collection of distributions over X, one for each combination of
parents’ values

• Bayes’ nets implicitly encode joint distributions

• As a product of local conditional distributions

• To see what probability a BN gives to a full assignment, multiply
all the relevant conditionals together:
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Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05

+b -e +a 0.94
+b -e -a 0.06

-b +e +a 0.29
-b +e -a 0.71

-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1

-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3

-a +m 0.01
-a -m 0.99
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Example: Alarm Network
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Example: Alarm Network
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Video of Demo BN Applet
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Bayes’ Nets
• Representation

• Conditional Independences

• Probabilistic Inference

• Enumeration (exact, exponential complexity)

• Variable elimination (exact, worst-case exponential
complexity, often better)

• Inference is NP-complete

• Sampling (approximate)

• Learning Bayes’ Nets from Data
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• Examples:

• Posterior probability

• Most likely explanation:

Inference

• Inference: calculating some
useful quantity from a joint
probability distribution
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Inference by Enumeration

• General case:
• Evidence variables:
• Query* variable:
• Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

• We want:

• Step 1: Select the 
entries consistent 
with the evidence

• Step 2: Sum out H to get joint 
of Query and evidence

• Step 3: Normalize

⇥ 1

Z
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Inference by Enumeration in Bayes’ Net
• Given unlimited time, inference in BNs is easy

• Reminder of inference by enumeration:
• Any probability of interest can be computed by summing entries from the

joint distribution: P(Q | e) = α ∑h P(Q , h, e)
• Entries from the joint distribution can be obtained from a BN by multiplying

the corresponding conditional probabilities

• So inference in Bayes nets means computing sums of products of
numbers: sounds easy!!

• Problem: sums of exponentially many products!

B E

A

MJ
P (B |+ j,+m) /B P (B,+j,+m)

=
X

e,a

P (B, e, a,+j,+m)

=
X

e,a

P (B)P (e)P (a|B, e)P (+j|a)P (+m|a)

=P (B)P (+e)P (+a|B,+e)P (+j|+ a)P (+m|+ a) + P (B)P (+e)P (�a|B,+e)P (+j|� a)P (+m|� a)

P (B)P (�e)P (+a|B,�e)P (+j|+ a)P (+m|+ a) + P (B)P (�e)P (�a|B,�e)P (+j|� a)P (+m|� a)
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Inference by Enumeration?

P (Antilock|observed variables) = ?
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Distribution of Products on Sums
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• Exploiting the factorization properties to allow sums and
products to be interchanged
• 𝑎×𝑏 + 𝑎×𝑐 needs three operations while 𝑎×(𝑏 + 𝑐) requires
two

• 𝑎×(𝑏! +⋯+ 𝑏")
• `



Can we do better?

• Consider uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz
• 16 multiplies, 7 adds
• Lots of repeated subexpressions!

• Rewrite as (u+v)(w+x)(y+z)
• 2 multiplies, 3 adds

• åe,a P(B) P(e) P(a|B,e) P(j|a) P(m|a)
• = P(B)P(e)P(a|B,e)P(j|a)P(m|a) + P(B)P(¬e)P(a|B,¬e)P(j|a)P(m|a)
• +P(B)P(e)P(¬a|B,e)P(j|¬a)P(m|¬a) + P(B)P(¬e)P(¬a|B,¬e)P(j|¬a)P(m|¬a)
Lots of repeated subexpressions!
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Variable Elimination: The basic ideas

• Move summations inwards as far as possible
P(B | j,m) = α åe,aP(B) P(e) P(a|B,e) P(j|a) P(m|a)

= α P(B) åeP(e) åaP(a|B,e) P(j|a) P(m|a)

• Do the calculation from the inside out
• i.e., sum over a first, then sum over e
• Problem: P(a|B,e) isn’t a single number, it’s a bunch of different

numbers depending on the values of B and e
• Solution: use arrays of numbers (of various dimensions) with

appropriate operations on them; these are called factors
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Factor Zoo
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Factor Zoo I

• Joint distribution: P(X,Y)
• Entries P(x,y) for all x, y
• |X|x|Y| matrix
• Sums to 1

• Projected joint: P(x,Y)
• A slice of the joint distribution
• Entries P(x,y) for one x, all y
• |Y|-element vector
• Sums to P(x)

A \ J true false

true 0.09 0.01

false 0.045 0.855

P(A,J)

P(a,J) = Pa(J)

Number of variables (capitals) = dimensionality of the table

A \ J true false

true 0.09 0.01
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Factor Zoo II

• Single conditional: P(Y | x)
• Entries P(y | x) for fixed x, all y
• Sums to 1

• Family of conditionals:
P(X |Y)
• Multiple conditionals
• Entries P(x | y) for all x, y
• Sums to |Y|

A \ J true false

true 0.9 0.1

P(J|a)

A \ J true false

true 0.9 0.1

false 0.05 0.95

P(J|A)

} - P(J|a)
} - P(J|¬a)
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Operation 1: Pointwise Product
• First basic operation: pointwise product of factors

(similar to a database join, not matrix multiply!)
• New factor has union of variables of the two original factors
• Each entry is the product of the corresponding entries from

the original factors

• Example: P(J|A) x P(A) = P(A,J)

P(J|A)
P(A)

P(A,J)
A \ J true false

true 0.09 0.01

false 0.045 0.855

A \ J true false

true 0.9 0.1

false 0.05 0.95

true 0.1

false 0.9 x =
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Example: Making larger factors

• Example: P(A,J) x P(A,M) = P(A,J,M)

P(A,J)
A \ J true false

true 0.09 0.01

false 0.045 0.855
x =

P(A,M)
A \ M true false

true 0.07 0.03

false 0.009 0.891 A=true

A=false

P(A,J,M)
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Example: Making larger factors

• Example: P(U,V) x P(V,W) x P(W,X) = P(U,V,W,X)
• Sizes: [10,10] x [10,10] x [10,10] = [10,10,10,10]
• I.e., 300 numbers blows up to 10,000 numbers!
• Factor blowup can make VE very expensive
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Operation 2: Summing Out a Variable
• Second basic operation: summing out (or eliminating)

a variable from a factor
• Shrinks a factor to a smaller one

• Example: åj P(A,J) = P(A,j) + P(A,¬j) = P(A)

A \ J true false

true 0.09 0.01

false 0.045 0.855

true 0.1

false 0.9

P(A)
P(A,J)

Sum out J
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Summing out from a product of factors
• Project the factors each way first, then sum the products
• Example:åa P(a|B,e) x P(j|a) x P(m|a)
• = P(a|B,e) x P(j|a) x P(m|a) +
• P(¬a|B,e) x P(j|¬a) x P(m|¬a)
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Variable Elimination
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Variable Elimination
• Query: P(Q|E1=e1,.., Ek=ek)

• Start with initial factors:
• Local CPTs (but instantiated by evidence)

• While there are still hidden variables (not Q or
evidence):
• Pick a hidden variable Hj

• Eliminate (sum out) Hj from the product of all factors
mentioning Hj

• Join all remaining factors and normalize
X α
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Inference by Enumeration vs. Variable Elimination

• Why is inference by enumeration so slow?
• You join up the whole joint distribution before

you sum out the hidden variables

• Idea: interleave joining and marginalizing!
• Called “Variable Elimination”
• Still NP-hard, but usually much faster than 

inference by enumeration

First we’ll need some new notation: factors
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Traffic Domain

• Inference by EnumerationT

L

R P (L) = ?

• Variable Elimination

=
X

t

P (L|t)
X

r

P (r)P (t|r)

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

=
X

t

X

r

P (L|t)P (r)P (t|r)

Eliminate t
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Marginalizing Early! (aka VE)

Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T
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P (L) = ?

T

R

L



Marginalizing Early (= Variable Elimination)
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Improvement Reasons
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• Computing an expression of the form (sum-product inference):

!
𝑯

"
"∈𝜱

𝜙

• We used the structure of BN to factorize the joint distribution and
thus the scope of the resulted factors will be limited.

• Distributive law: If ℎ ∉ Scope(𝜙%) then ∑&𝜙% . 𝜙' = 𝜙%. ∑&𝜙'
• Performing the summations over the product of only a subset of factors

• We find sub-expressions that can be computed once and then we
save and reuse them in later computations
• Instead of computing them exponentially many times

𝜱: the set of factors



Variable Elimination Algorithm
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• Given: BN, evidence 𝑒, a query 𝑃(𝑸|𝒙𝒆)
• Choose an ordering on variables, e.g., 𝑋#, …, 𝑋$
• For i = 1 to n, If 𝑋% ∉ {𝑸,𝑿𝒆}
• Collect factors 𝒇!, … , 𝒇" that include 𝑋#
• Generate a new factor by eliminating 𝑋# from these factors:

𝒈 ='
$!
(

%&!

"
𝒇%

• Multiply all remaining factors
• Normalize 𝑃(𝑸, 𝒙𝒆) to obtain 𝑃(𝑸|𝒙𝒆)

After this summation, 𝑋! is eliminated



Example

Choose A
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Example (Cont.)

Choose E

Finish with B

Normalize
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Same Example in Equations

marginal can be obtained from joint by summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f1

use x*(y+z) = xy + xz

joining on e, and then summing out gives f2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!
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Variable Elimination Algorithm 
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• Sum out each variable one at a time
• all factors containing that variable are (removed from the set
of factors and) multiplied to generate a product factor

• The variable is summed out from the generated product factor
and a new factor is obtained

• The new factor is added to the set of the available factors

The resulted factor does not necessarily correspond to any 
probability or conditional probability in the network



Variable Elimination Algorithm
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• Evaluating expressions in a proper order
• Storing intermediate results
• Summation only for those portions of the expression that 

depend on that variable

• Given: BN, evidence 𝑒, a query 𝑃(𝑸|𝒙𝒆)
• Choose an ordering on variables, e.g.,𝑋#, …,𝑋$
• For i = 1 to n, If 𝑋% ∉ {𝑸,𝑿𝒆}
• Collect factors 𝒇!, … , 𝒇" that include 𝑋#
• Generate a new factor by eliminating 𝑋# from these factors:

• 𝒈 = ∑$!∏%&!
" 𝒇%

• Multiply all remaining factors
• Normalize 𝑃(𝑸, 𝒙𝒆) to obtain 𝑃(𝑸|𝒙𝒆)



Complexity of Variable Elimination Algorithm
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• In each elimination step, the following computations are
required:
• 𝑓 𝑥, 𝑥!, … , 𝑥# = ∏$%!

& 𝑔$(𝑥, 𝒙'!)
• ∑( 𝑓 𝑥, 𝑥!, … , 𝑥#

• We need:
• (𝑀 − 1)× 𝑉𝑎𝑙(𝑋) ×∏$%!

# 𝑉𝑎𝑙(𝑋$) multiplications
• For each tuple 𝑥, 𝑥!, … , 𝑥", we need 𝑀 − 1 multiplications

• 𝑉𝑎𝑙(𝑋) ×∏$%!
# 𝑉𝑎𝑙(𝑋$) additions

• For each tuple 𝑥!, … , 𝑥", we need 𝑉𝑎𝑙(𝑋) additions

Complexity is exponential in number of variables in the intermediate factor
Size of the created factors is the dominant quantity in the complexity of VE



Variable Elimination:
Pruning Irrelevant Variables

37

• Any variable that is not an ancestor of a query variable
or evidence variable is irrelevant to the query.

• Prune all non-ancestors of query or evidence variables:
• 𝑃 𝑏, 𝑗

Burglary

Alarm

John Calls
=True

Earthquake

Mary 
Calls

XY

Z



Variable Elimination Algorithm
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• Given: BN, evidence 𝑒, a query 𝑃(𝑸|𝒙𝒆)
• Prune non-ancestors of {𝑸, 𝑿𝒆}
• Choose an ordering on variables, e.g., 𝑋", …, 𝑋#
• For i = 1 to n, If 𝑋$ ∉ {𝑸, 𝑿𝒆}
• Collect factors 𝒇!, … , 𝒇# that include 𝑋$
• Generate a new factor by eliminating 𝑋$ from these factors:

𝒈 =:
)!
;

*%!

#
𝒇*

• Multiply all remaining factors
• Normalize 𝑃(𝑸, 𝒙𝒆) to obtain 𝑃(𝑸|𝒙𝒆)

After this summation, 𝑋! is eliminated



Inference in Ghostbusters

• A ghost is in the grid somewhere
• Sensor readings tell how close a square is to

the ghost
• On the ghost: red
• 1 or 2 away: orange
• 3 or 4 away: yellow
• 5+ away: green

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3

• Sensors are noisy, but we know P(Color | Distance)
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Video of Demo Ghostbusters
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Wampus Example

41

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 = ¬𝑏!,! ∧ 𝑏!,( ∧ 𝑏(,! ∧ ¬𝑝!,! ∧ ¬𝑝!,( ∧ ¬𝑝(,!

𝑃 𝑃!,) 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 =?

Environment:
Each square other than [1,1] can be a pit with probability 0.2
It the squares adjacent to a pit, agent perceives a Breeze 
Game ends when the agent enters a pit



Wumpus Example
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Possible worlds with 𝑃",$ = 𝑡𝑟𝑢𝑒 Possible worlds with 𝑃",$ = 𝑓𝑎𝑙𝑠𝑒

𝑃 𝑃",$ = 𝑇𝑟𝑢𝑒 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 ∝ 0.2 × 0.2×0.2 + 0.2×0.8 + 0.8×0.2
𝑃 𝑃",$ = 𝐹𝑎𝑙𝑠𝑒 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 ∝ 0.8 × 0.2×0.2 + 0.2×0.8
⇒ 𝑃 𝑃",$ = 𝑇𝑟𝑢𝑒 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 = 0.31



Variable Elimination Complexity
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• Eliminates by summation non-observed non-query variables
one by one by distributing the sum over the product

• Complexity determined by the size of the largest factor

• Variable elimination can lead to significant costs saving but its
efficiency depends on the network structure .
• there are still cases in which this algorithm we lead to exponential time.



Example: Inference on a Chain
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𝑃 𝐷 =1
%
1

&
1

'
𝑃(𝐴, 𝐵, 𝐶, 𝐷)

𝑃 𝐷 =1
%

1
&
1

'
𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵 𝑃(𝐷|𝐶)

• A naïve summation needs to enumerate over an
exponential number of terms

𝐴 𝐵 𝐶 𝐷



Inference on a Chain:
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𝑃 𝐷 =F
%

F
&
F

'
𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵 𝑃(𝐷|𝐶)

=F
'

F
&
F

%
𝑃 𝐴 𝑃 𝐵 𝐴 𝑃 𝐶 𝐵 𝑃(𝐷|𝐶)

=F
'

𝑃(𝐷|𝐶) F
&
𝑃 𝐶 𝐵 F

%
𝑃 𝐴 𝑃 𝐵 𝐴

• In a chain of 𝑛 nodes each having 𝑑 values, 𝑂(𝑛𝑑() instead of 𝑂(𝑑))

𝑓(𝐵)

𝑓(𝐶)

𝐴 𝐵 𝐶 𝐷



Another Variable Elimination Example

Computational complexity critically 
depends on the largest factor being 
generated in this process.  Size of 
factor = number of entries in table.  In 
example above (assuming binary) all 
factors generated are of size 2 --- as 
they all only have one variable (Z, Z, 
and X3 respectively). 
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Variable Elimination Ordering
• For the query P(Xn|y1,…,yn) work through the following two different

orderings as done in previous slide: Z, X1, …, Xn-1 and X1, …, Xn-1, Z. What
is the size of the maximum factor generated for each of the orderings?

• Answer: 2n+1 versus 22 (assuming binary)

• In general: the ordering can greatly affect efficiency.

…

…
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VE: Computational and Space Complexity
• The computational and space complexity of variable
elimination is determined by the largest factor

• The elimination ordering can greatly affect the size of the
largest factor.
• E.g., previous slide’s example 2n vs. 2

• Does there always exist an ordering that only results in small
factors?
• No!
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Worst Case Complexity?
• CSP:

• If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a
solution.

• Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.

…

…
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Variable Elimination: Summary 

• Interleave joining and marginalizing

• dk entries computed for a factor over k
variables with domain sizes d

• Ordering of elimination of variables can
affect size of factors generated

• Worst case: running time exponential in the
size of the Bayes’ net

…

…
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Bayes’ Nets
• Representation

• Conditional Independences

• Probabilistic Inference

• Enumeration (exact, exponential complexity)

• Variable elimination (exact, worst-case
exponential complexity, often better)

• Inference is NP-complete

• Sampling (approximate)

• Learning Bayes’ Nets from Data
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Approximate Inference: Sampling
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Sampling

• Sampling is a lot like repeated simulation

• Predicting the weather, basketball games, …

• Basic idea

• Draw N samples from a sampling distribution S

• Compute an approximate posterior probability

• Show this converges to the true probability P

• Why sample?
• Often very fast yo get a descent 

approximate answer
• The algorithms are very simple and 

general (easy to apply to fancy models)
• They require very little memory (O(n))
• They can be applied to large models, 

whereas exact algorithms blow up
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Example

54

• Suppose you have two agent programs A and B for Monopoly
• What is the probability that A wins?
• Method 1:

• Let s be a sequence of dice rolls and Chance and Community Chest cards
• Given s, the outcome V(s) is determined (1 for a win, 0 for a loss)
• Probability that A wins is
• Problem: infinitely many sequences s !

• Method 2:
• Sample N sequences from P(s) , play N games (maybe 100)
• Probability that A wins is roughly 1/N åi V(si) i.e., fraction of wins in the

sample



Sampling
• Sampling from a given distribution

• Step 1: Get sample u from uniform distribution over [0, 1)
• E.g. random() in python

• Step 2: Convert this sample u into an outcome for the given distribution by having each
outcome associated with a sub-interval of [0,1) with sub-interval size equal to probability
of the outcome

• If random() returns u = 0.83, then 
our sample is C = blue

• E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3

55
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Sampling in Bayes’ Nets

• Prior Sampling

• Rejection Sampling

• Likelihood Weighting

• Gibbs Sampling

56



Prior Sampling

57

Shape Color



Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:
+c, -s, +r, +w
-c, +s, -r, +w
…
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Prior Sampling

• For i=1, 2, …, n

• Sample xi from P(Xi | Parents(Xi))

• Return (x1, x2, …, xn)
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Prior Sampling
• This process generates samples with probability:

• …i.e. the BN’s joint probability

• Let the number of samples of an event be

• Then

• I.e., the sampling procedure is consistent
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Example

• We’ll get a bunch of samples from the BN:
+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r, -w
+c, -s, +r, +w
-c, -s, -r, +w

• If we want to know P(W)
• We have counts <+w:4, -w:1>
• Normalize to get P(W) = <+w:0.8, -w:0.2>
• This will get closer to the true distribution with more samples
• Can estimate anything else, too
• What about P(C| +w)? P(C| +r, +w)? P(C| -r, -w)?
• Fast: can use fewer samples if less time (what’s the drawback?)

S R

W

C
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Rejection Sampling
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+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

Rejection Sampling

• A simple application of prior sampling for
estimating conditional probabilities
• Let’s say we want P(C| r, w) = α P(C, r, w)
• For these counts, samples with ¬r or ¬w are not

relevant
• So count the C outcomes for samples with r, w and

reject all other samples

• This is called rejection sampling
• It is also consistent for conditional probabilities (i.e.,

correct in the limit)

S R

W

C
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Rejection Sampling
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• Input: evidence e1,..,ek
• For i=1, 2, …, n

• Sample Xi from P(Xi | parents(Xi))

• If xi not consistent with evidence
• Reject: Return, and no sample is generated in this cycle

• Return (x1, x2, …, xn)



Likelihood Weighting
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• Idea: fix evidence variables and sample 
the rest
• Problem: sample distribution not consistent!
• Solution: : weight each sample by probability 

of evidence variables given parents

Likelihood Weighting
• Problem with rejection sampling:

• If evidence is unlikely, rejects lots of samples
• Evidence not exploited as you sample
• Consider P(Shape|blue)

Shape ColorShape Color
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pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue



Likelihood Weighting

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:
+c, +s, +r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass
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P(C| +s, +w)=?



Likelihood Weighting
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• Input: evidence e1,..,ek
• w = 1.0
• for i=1, 2, …, n

• if Xi is an evidence variable
• xi = observed valuei for Xi
• Set w = w * P(xi | parents(Xi))

• else
• Sample xi from P(Xi | parents(Xi))

• return (x1, x2, …, xn), w



Likelihood Weighting

• Sampling distribution if z sampled and e fixed evidence

• Now, samples have weights

• Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W
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Likelihood Weighting
• Likelihood weighting is good

• We have taken evidence into account as we generate the sample
• E.g. here, W’s value will get picked based on the evidence values of S, R
• More of our samples will reflect the state of the world suggested by the evidence

• Likelihood weighting doesn’t solve all our problems
• Evidence influences the choice of downstream variables, but not upstream ones (C isn’t

more likely to get a value matching the evidence)

• We would like to consider evidence when we sample every variable
à Gibbs sampling
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Gibbs Sampling

71



Gibbs Sampling
• Procedure: keep track of a full instantiation x1, x2, …, xn.

• Start with an arbitrary instantiation consistent with the evidence.
• Sample one variable at a time, conditioned on all the rest, but keep evidence fixed.
• Keep repeating this for a long time.

• Property: in the limit of repeating this infinitely many times the resulting sample is
coming from the correct distribution

• Rationale: both upstream and downstream variables condition on evidence.
•

• In contrast: likelihood weighting only conditions on upstream evidence, and hence
weights obtained in likelihood weighting can sometimes be very small.
• Sum of weights over all samples is indicative of how many “effective” samples were obtained, so

want high weight.
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Gibbs Sampling Example: P( S | +r)
• Step 1: Fix evidence

• R = +r

• Step 2: Initialize other variables
• Randomly

• Steps 3: Repeat
• Choose a non-evidence variable X
• Resample X from P( X | all other variables)

S +r

W

C

S +r

W

C

S +r
W

C
S +r

W

C
S +r

W

C
S +r

W

C
S +r

W

C
S +r

W

C
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Gibbs Sampling
• How is this better than sampling from the full joint?
• In a Bayes’ Net, sampling a variable given all the other
variables (e.g. P(R|S,C,W)) is usually much easier than
sampling from the full joint distribution
• Only requires a join on the variable to be sampled (in this case, a join on R)
• The resulting factor only depends on the variable’s parents, its children, and its children’s

parents (this is often referred to as its Markov blanket)
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Efficient Resampling of One Variable
• Sample from P(S | +c, +r, -w)

• Many things cancel out – only CPTs with S remain!
• More generally: only CPTs that have resampled variable need to be

considered, and joined together

S +r

W

C
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Bayes’ Net Sampling Summary

• Prior Sampling P:
• Generate complete samples from P(x1,…,xn)

• Likelihood Weighting P( Q | e):
• Weight samples by how well they predict e

• Rejection Sampling  P( Q | e ):
• Reject samples that don’t match e

• Gibbs Sampling  P( Q | e ):
• Wander around in e space
• Average what you see
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Further Reading on Gibbs Sampling*
• Gibbs sampling produces sample from the query distribution P(Q|e)

in limit of re-sampling infinitely often

• Gibbs sampling is a special case of more general methods called
Markov chain Monte Carlo (MCMC) methods
• Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs

sampling is a special case of Metropolis-Hastings)

• You may read about Monte Carlo methods – they’re just sampling
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